Compuestos
Los gases nobles tienen una reactividad extremadamente baja; a pesar de ello, se han formado una gran cantidad de compuestos de gases nobles. No se han formado compuestos neutros en los que el helio y el neón estén presentes en los enlaces químicos (aunque hay pruebas teóricas de algunos compuestos de helio), mientras que el xenón, el kriptón y el argón sólo presentan una reactividad baja.33 La reactividad sigue el orden Ne < He < Ar < Kr < Xe < Rn.
En 1933, Linus Pauling argumentó que los gases nobles más pesados podían formar compuestos con el flúor y el oxígeno. De igual forma, arguyó la existencia del hexafluoruro de kriptón (KrF6) y el hexafluoruro de xenón (XeF6), y especuló que el XeF8 podría existir como compuesto inestable, sugiriendo también que el ácido xénico (H2XeO4) podía formar sales de perxenato.34 35 Se ha demostrado que estas predicciones eran generalmente precisas, salvo que actualmente se cree que el XeF8 es termodinámica y cinéticamenteinestable.36 Los compuestos de xenón son los más numerosos de los compuestos de gas noble que se han formado.37 La mayoría de ellos tienen el átomo de xenón en el estado de oxidación +2, +4, +6 ó +8 unido a átomos muy electronegativos como el flúor o eloxígeno, como en el fluoruro de xenón (XeF2), el tetrafluoruro de xenón (XeF4), el hexafluoruro de xenón (XeF6), el tetraóxido de xenón(XeO4) y el Perxenato de sodio (Na4XeO6). Algunos de estos compuestos han sido utilizados en la síntesis química como agentes oxidantes; el XeF2, en particular, está disponible comercialmente y se puede utilizar como agente fluorador.38 En 2007, se habían identificado unos quinientos compuestos de xenón unidos a otros elementos, incluyendo compuestos organoxenones (unidos con carbono), así como xenón unido a nitrógeno, cloro, oro, mercurio y al propio xenón.33También se han observado compuestos de xenón unido a boro, hidrógeno, bromo, yodo, berilio, azufre, titanio, cobre y plata, pero sólo a temperaturas bajas en matrices de gases nobles, o en jet streams de gases nobles.33
En teoría, el radón es más reactivo que el xenón, y por tanto debería formar enlaces químicos más fácilmente que el xenón. Sin embargo, debido a la gran radiactividad y la corta semivida de los isótopos del radón, en la práctica sólo se han formado unos pocos fluoruros y óxidos de radón.39 El kriptón es menos reactivo que el xenón, pero se han observado diversos compuestos con el kriptón en el estado de oxidación +2.33 El difluoruro de kriptón es el más notable y fácil de caracterizar. También se han caracterizado compuestos en que el kriptón forma un enlace único con nitrógeno y oxígeno,40 pero sólo son estables por debajo de −60 °C y −90 °C, respectivamente. Se han observado átomos de kriptón unidos químicamente a otros no metales (hidrógeno, cloro, carbono), así como algunos metales de transición tardíos (cobre, plata, oro), pero sólo o bien a temperaturas bajas.33Se utilizaron condiciones similares para obtener los primeros pocos compuestos de argón en el 2000, como el fluorohidruro de argón (HArF), y algunos unidos a los metales de transición tardíos.33 En 2007 no se conocían moléculas neutras estables con átomos de helio o neón con enlaces covalentes.33
Los gases nobles, incluyendo el helio, pueden formar iones moleculares estables en fase gaseosa. El más simple es el hidrohelio, HeH+, descubierto en 1925.41 Al estar compuesto por los dos elementos más abundantes del universo, el hidrógeno y el helio, se cree que se da naturalmente en el medio interestelar, aunque aún no ha sido detectado.42 Además de estos iones, hay muchos excímeros neutros conocidos de estos gases. Hay compuestos como ArF y KrF que sólo son estables cuando se encuentran en un estado electrónico excitado, y algunos de ellos se emplean en los láseres de excímeros.
Además de los compuestos en que un átomo de gas noble está implicado en un enlace covalente, los gases nobles también forman compuestos no covalentes. Los clatratos, descritos por primera vez en 1949,43 consisten en un átomo de gas noble atrapado dentro de cavidades de la estructura cristalina de determinadas sustancias orgánicas e inorgánicas. La condición esencial para que se formen es que los átomos invitados (los del gas noble) deben tener el tamaño adecuado para encajar en las cavidades de la estructura cristalina del huésped. Por ejemplo, el argón, el kriptón y el xenón forman clatratos con la hidroquinona, pero el helio y el neón no, pues son demasiado pequeños o tienen una polarizabilidad insuficiente para ser retenidos.44 El neón, el argón, el kriptón y el xenón también forman hidratos de clatratos; esto quiere decir que los gases nobles quedan atrapados dentro de la capa de helio de dichos compuestos.45
Los gases nobles pueden formar compuestos fulerenos endoédricos, en los que el átomo de gas noble está atrapado dentro de una molécula de fullereno. En 1993, se descubrió que cuando se expone C60, una molécula esférica compuesta de 60 átomos de carbono, gases nobles a una presión elevada, se pueden formar complejos como He@C60 (@ indica que He se encuentra contenido dentro de C60, pero que no está unido covalentemente).46 En 2008 se obtuvieron complejos endohédricos con helio, neón, argón, kriptón y xenón.47 Estos compuestos se utilizan en el estudio de la estructura y la reactividad de los fulerenos mediante la resonancia magnética nuclear del átomo de gas noble.48
Se considera que los compuestos de gases nobles, como el difluoruro de xenón (XeF2), son hipervalentes, pues violan la regla del octeto. Se puede explicar los enlaces en estos compuestos con un modelo de tres centros y cuatro electrones.49 50 Este modelo, propuesto por primera vez en 1951, considera la unión de tres átomos colineales. Por ejemplo, los enlaces de XeF2 se describen por un conjunto de tres orbitales moleculares derivadas de los orbitales p de cada átomo. Los enlaces resultan de la combinación de un orbital p de Xe con un orbital p medio lleno de cada átomo de F, resultando en un orbital de enlace lleno, un orbital de enlace no lleno, y un orbital de antienlace. El orbital molecular ocupado más alto se encuentra en los dos átomos terminales. Esto representa una localización de la carga facilitada por la alta electronegatividad del flúor.51 La química de los gases nobles más pesados, el kriptón y el xenón, está bien determinada. La de los más ligeros, el helio y el argón, aún se encuentra en un estado temprano, mientras que aún no se ha identificado algún compuesto de neón.
[editar]Abundancia y producción
La abundancia de los gases nobles en el universo disminuye a medida que aumenta su número atómico. El helio es el elemento más común en el universo después del hidrógeno, con una proporción de masa de aproximadamente el 24%. La mayoría del helio del universo se formó durante la nucleosíntesis primordial, pero la cantidad de helio aumenta constantemente debido a la fusión de hidrógeno en la nucleosíntesis estelar (proceso realizado mediante reacciones nucleares que tiene su origen en las estrellas durante su proceso evolutivo, y que antecede a una supernova por colapso gravitatorio).52 53 La abundancia en la Tierra muestra tendencias diferentes; por ejemplo, el helio es sólo el tercer gas noble más abundante de la atmósfera. El motivo es que no hay helio primordial en la atmósfera, ya que debido a la pequeña masa de este átomo, el helio no puede ser retenido por el campo gravitatorio terrestre.54 El helio de la Tierra deriva de la desintegración alfa de elementos pesados como el uranio o el torio de la corteza terrestre, y tiende a acumularse en yacimientos de gas natural.54 Por otro lado, la abundancia del argón crece como resultado de la desintegración alfa del potasio-40, que también se encuentra en la corteza terrestre, para formar argón-40, que es el isótopo del argón más abundante de la Tierra a pesar de ser relativamente raro en el sistema solar. Este proceso es la base del método de datación por potasio-argón.55 El xenón tiene una abundancia relativamente baja en la atmósfera, lo que se ha dado a conocer como el "problema del xenón desaparecido"; una teoría es que el xenón que falta podría estar atrapado en minerales dentro de la corteza terrestre.56 El radón se forma en la litosfera por la desintegración alfa del radio. Se puede filtrar en edificios a través de los cimientos y acumularse en áreas mal ventiladas. Debido a su gran radiactividad, el radón supone un riesgo significativo para la salud; sólo en Estados Unidos, está asociado con unas 21.000 muertes por cáncer de pulmón cada año.57
Abundancia | Helio | Neón | Argón | Kriptón | Xenón | Radón |
---|---|---|---|---|---|---|
Sistema solar (por cada átomo de silicio)58 | 2.343 | 2,148 | 0,1025 | 5,515 × 10−5 | 5,391 × 10−6 | – |
Atmósfera terrestre (proporción en volumen en ppm)59 | 5,20 | 18,20 | 9.340,00 | 1,10 | 0,09 | (0,06 – 18) × 10−1960 |
Roca ígnea (proporción en masa en ppm)25 | 3 × 10−3 | 7 × 10−5 | 4 × 10−2 | – | – | 1,7 × 10−10 |
Gas | Precio en el 2004 (USD/m3)61 |
---|---|
Helio (grado industrial) | 4,20–4,90 |
Helio (grado de laboratorio) | 22,30–44,90 |
Argón | 2,70–8,50 |
Neón | 60–120 |
Kriptón | 400–500 |
Xenón | 4.000–5.000 |
El neón, el argón, el criptón y el xenón se obtienen a partir del aire utilizando los métodos de licuefacción de gases, para convertir los elementos a un estado líquido, y de destilación fraccionada, para separar las mezclas en sus componentes. El helio se produce generalmente separándolo del gas natural, y el radón se aísla de la desintegración radioactiva de los compuestos de radio.9 El precio de los gases nobles está influido por su abundancia natural, siendo el argón el más barato y el xenón el más caro. Lo ilustra la tabla de la derecha, con los precios en USD de 2004 por cantidades de laboratorio de cada gas.
No hay comentarios:
Publicar un comentario