lunes, 21 de mayo de 2012

gases nobles

Propiedades físicas y atómicas

PropiedadGas noble
Número atómico21018365486
Nombre del elementoHelioNeónArgónKriptónXenónRadón
Densidad (kg/m3)0,17850,90021,78183,7085,8519,970
Radio atómico (nm)0,0500,0700,0940,1090,130
Punto de ebullición (°C)–268,83–245,92–185,81–151,70–106,60–62
Punto de fusión (°C)–272–248,52–189,6–157–111,5–71
Los gases nobles cuentan con fuerzas intermoleculares muy débiles y, por lo tanto, tienen puntos de fusión y de ebullición muy bajos. Todos ellos son gases monoatómicos bajo condiciones estándar, incluyendo aquellos que tienen masas atómicas mayores que algunos elementos que se encuentran normalmente en estado sólido. El helio tiene varias propiedades únicas con respecto a otros elementos: tanto su punto de ebullición como el de fusión son menores que los de cualquier otra sustancia conocida; es el único elemento conocido que presenta superfluidez; de la misma manera no puede ser solidificado por enfriamiento bajo condiciones estándar, sino que se convierte en sólido bajo una presión de 25 atm (2500 kPa; 370 psi) y 0,95 K (−272,20 °C; −457.960 °F).24 Los gases nobles hasta el xenón tienen múltiples isótopos estables. El radón no tiene isótopos estables; su isótopo de mayor duración tiene un periodo de semidesintegración de 3,8 días que puede formar helio y polonio.9
El radio atómico de los gases nobles aumenta de un periodo a otro debido al incremento en el número de electrones. El tamaño del átomo se relaciona con varias propiedades. Por ejemplo, el potencial de ionización disminuye a medida que aumenta el radio ya que los electrones de valencia en los átomos más grandes se encuentran más alejados del núcleo y, por lo tanto, no se encuentran ligados tan fuertemente por el átomo. Los gases nobles tienen los mayores potenciales de ionización de cada periodo, lo cual refleja lo estable que es su configuración electrónica y genera su falta de reactividad química.25 Sin embargo, algunos de los gases nobles más pesados tienen potenciales de ionización lo suficientemente bajos para ser comparables a los de otros elementos y moléculas. El químico Neil Bartlett, intentando crear el compuesto de un gas noble, notó que el potencial de ionización del xenón era similar al de la molécula de oxígeno, por lo que intentó oxidar xenón usando hexafluoruro de platino, un agente oxidante tan fuerte que es capaz de reaccionar con oxígeno.15 Los gases nobles no pueden aceptar un electrón para formar aniones estables. Esto quiere decir que poseen una afinidad electrónica negativa.
Gráfico de potencial de ionizaciónrespecto al número atómico. Los gases nobles tienen el mayor potencial de ionización de cada periodo.
Las propiedades físicas macroscópicas de los gases nobles están determinadas por las débiles fuerzas de Van der Waals que se dan entre átomos. Las fuerzas de atracción aumentan con el tamaño del átomo como un resultado del incremento en la polarizabilidad y el descenso del potencial de ionización. Esto lleva a tendencias grupales sistemáticas. Por ejemplo, a medida que se baja en los grupos de la tabla periódica, el radio atómico y las fuerzas interatómicas aumentan. De igual forma, se adquieren mayores puntos de fusión y deebulliciónentalpía de vaporización y solubilidad. El aumento de densidad se debe al incremento en masa atómica.
Los gases nobles se comportan como gases ideales bajo condiciones normales de presión y temperatura, pero sus tendencias anormales a la ley de los gases ideales proporcionan claves importantes para el estudio de las fuerzas e interacciones moleculares. Elpotencial de Lennard-Jones, usado frecuentemente para modelar fuerzas intermoleculares, fue deducido en 1924 por John Lennard-Jonesa partir de datos experimentales del argón antes de que el desarrollo de la mecánica cuántica proporcionara las herramientas necesarias para entender las fuerzas intermoleculares a partir de primeros principios.27 El análisis teórico de estas fuerzas se volvió viable debido a que los gases nobles son monoatómicos, y por tanto isótropos (independientes de la dirección).

[editar]Propiedades químicas

Tabla de gases con respectivas capas de electrones
ZElementoElectrones por capa
2helio2
10neón2, 8
18argón2, 8, 8
36kriptón2, 8, 18, 8
54xenón2, 8, 18, 18, 8
86radón2, 8, 18, 32, 18, 8
En los seis primeros periodos de la tabla periódica, los gases nobles son exactamente los miembros del grupo 18 (8A) de la tabla (anteriormente conocido como grupo 0). Sin embargo, esto ya no es cierto en el séptimo periodo (debido a efectos relativistas): el siguiente miembro del grupo 18, el ununoctio, probablemente no es un gas noble.28 En cambio, el miembro del grupo 14 Ununquadio presenta propiedades similares a las de los gases nobles.29
Los gases nobles son incoloros, inodoros, insípidos y no inflamables en condiciones normales. Antiguamente se les asignaba el grupo 0 de la tabla periódica porque se creía que tenían una valencia cero, es decir, que sus átomos no se pueden combinar con otros elementos para formar compuestos. Sin embargo, más tarde se descubrió que algunos sí forman compuestos, haciendo que se abandonara esta denominación. Se conoce muy poco sobre las propiedades del miembro más reciente del grupo 18, el ununoctio (Uuo).30 Los gases nobles tienen capas llenas de electrones de valencia. Los electrones de valencia son los electrones que se encuentran más al exterior de los átomos y normalmente son los únicos que participan en los enlaces químicos. Los átomos con capas de valencia llenas de electrones son extremadamente estables y por tanto no tienden a formar enlaces químicos y tienen poca tendencia a ganar o perder electrones.31 Sin embargo, los gases nobles más pesados, como el radón, están unidos menos firmemente por la fuerza electromagnética que los más ligeros, como el helio, haciendo que sea más fácil retirar electrones exteriores de los gases nobles pesados. Debido a que dicha capa está completa, los gases nobles se pueden utilizar de acuerdo con la notación de configuración electrónica para dar lugar a una "notación de gases nobles". Para ello, primero se escribe el gas noble más cercano que precede al elemento en cuestión, y se continúa la configuración electrónica a partir de ese punto. Por ejemplo, la notación electrónica del carbono es 1s2 2s2 2p2, y su notación de gas noble es [He] 2s2 2p2. Esta notación hace que resulte más fácil identificar elementos, y es más corta que escribir toda la notación de orbitales atómicos.

No hay comentarios:

Publicar un comentario